
Lecture 9: Load Balancing &
Resource Allocation

Introduction
• Moler’s law, Sullivan’s theorem give upper bounds on the

speed-up that can be achieved using multiple processors.

• But to get these need to “efficiently” assign the different
concurrent processes that make up a concurrent program
on the available processors.

• This is called Load Balancing.

• Load balancing is a special case of more general Resource
Allocation Problem in a parallel/distributed system.

• In the load balancing situation, resources are processors.

• Before clarifying load balancing problem need to formalise
models of the concurrent program and concurrent system.

• To do this, we can use methods such as Graph Theory.

CA463 Lecture Notes (Martin Crane 2014) 2

Sources of Parallel Imbalance

• Individual processor performance
– Typically in the memory system

• Too much parallelism overhead
– Thread creation, synchronization, communication

• Load imbalance
– Different amounts of work across processors (comp: comms ratio)

– Processor heterogeneity (maybe caused by load distribution)

• Recognizing load imbalance
– Time spent at synchronization is high/uneven across processors

CA463 Lecture Notes (Martin Crane 2014) 3

Aside: Graph Theory
• Directed graph are useful in the context of load balancing

• Nodes can represent tasks and the links representing data or
communication dependencies

• Need to partition graph so that to minimize execution time.

• The graph partition problem is formally defined on data
represented in the form of a graph

 𝐺 = (𝑉, 𝐸) with 𝑉 vertices and 𝐸 edges

• It is possible to partition 𝐺 into smaller components with
specific properties.

• For instance, a 𝑘-way partition divides the vertex set into 𝑘
smaller components.

• A good partition is defined as one in which the number of edges
running between separated components is small.

CA463 Lecture Notes (Martin Crane 2014) 4

Graph Theory (cont’d)
• Partition 𝐺 such that

– 𝑉 = 𝑉1 ∪ 𝑉2 ∪ ⋯ ∪ 𝑉𝑛 with 𝑉𝑖 ≈ 𝑉 /𝑛

– As few of 𝐸 connecting 𝑉𝑖 with 𝑉𝑗 as possible

• If 𝑉 = {tasks}, each unit cost, edge 𝑒= 𝑖, 𝑗 (comms between
task 𝑖 and task 𝑗), and partitioning means

– 𝑉 = 𝑉1 ∪ 𝑉2 ∪ ⋯ ∪ 𝑉𝑛 with 𝑉𝑖 ≈ 𝑉 /𝑛 i.e. load balancing

– Minimize 𝐸 i.e. minimize comms

• As optimal graph partitioning is NP complete, so use heuristics

• Trades off between partitioner speed & with quality of partition

• Better load balance costs more and law of diminishing returns?

CA463 Lecture Notes (Martin Crane 2014) 5

Formal Models in Load Balancing: Task Graphs
• A task graph is a directed acyclic graph where

– nodes denote the concurrent processes in a concurrent program

– edges between nodes represent process comms/synchronisation

– nodal weight is the computational load of the process the node
represents

– edge weight between two nodes is the amount of comms
between two processes represented by the two nodes.

1

2 3 4

5

5

10 5 8

5

1
2

1

2
2

3

CA463 Lecture Notes (Martin Crane 2014) 6

Formal Models in Load Balancing:
Processor Graphs

• The processor graph defines the configuration of the
parallel or distributed system.

• Each node represents a processor & the nodal weight is the
computation speed of this processor.

• The edges between nodes represent the communication
links between the processors represented by the nodes.

• Edge weight is the speed of this communications link.
1 2

3 4

5

1

1

1

1

6

1 1

1 1

4

4 4

4

CA463 Lecture Notes (Martin Crane 2014) 7

Load Balancing Based on Graph
Partitioning: Typical Example

• The Nodes represent tasks
• The Edges represent communication cost
• The Node values represent processing cost
• A second node value could represent reassignment cost

CA463 Lecture Notes (Martin Crane 2014) 8

Load Balancing: The Problem
• To partition a set of interacting tasks among a set of

interconnected processors to maximise “performance”.

• Basically the idea in load balancing is to balance the processor
load so they all can proceed at the same rate.

• However formally can define maximising “performance” as:

– minimising the makespan1, 𝐶𝑚𝑎𝑥 :
min (𝐶𝑚𝑎𝑥) = min(max

1≤𝑖≤𝑛
𝐶𝑖)

– minimising the response time, the total idle time, or

– any other reasonable goal.

• A general assumption that is made is that the comms between
tasks on the same processor is much faster than that between
two tasks on different processors.

• So intra-processor comms is deemed to be instantaneous.

1 where makespan is defined as the maximum completion time of any of the 𝑛 tasks
CA463 Lecture Notes (Martin Crane 2014) 9

Load Balancing: Allocation & Scheduling
• Load Balancing has two aspects:

– the allocation of the tasks to processors, and

– the scheduling of the tasks allocated to a processor.

• Allocation is usually seen as the more important issue.

– As a result some load balancing algorithms only address allocation.

• Complexity of the problem:
– Find an allocation of 𝑛 arbitrarily intercommunicating tasks,

– constrained by precedence relationships,

– to an arbitrarily interconnected network of m processing nodes,

– meeting a given deadline

 this is an NP complete problem.

• Finding min(𝐶𝑚𝑎𝑥) for a set of tasks, where any task can execute on
any node and is allowed to pre-empt another task, is NP complete
even when the number of processing nodes is limited to two.

CA463 Lecture Notes (Martin Crane 2014) 10

Casavant & Kuhl’s Taxonomy

local global

static dynamic

optimal sub-optimal

approximate heuristic

enumerative graph theory math. prgm. queuing

theory

physically

distributed
physically

non-distributed

cooperative non-cooperative

optimal sub-optimal

approximate heuristic

• A hierarchical taxonomy of algorithms is by Casavant and Kuhl.

CA463 Lecture Notes (Martin Crane 2014) 11

Casavant & Kuhl (cont’d):
Static V Dynamic

• Static Algorithms:

– nodal assignment (once
made to processors) is
fixed

– use only info about the
average behaviour of the
system.

– ignore current state/load
of the nodes in the
system.

– are obviously much
simpler.

• Dynamic Algorithms:

– use runtime state info to
make decisions

– i.e. can tasks be moved
from one processor as
system state changes?

– collect state information
and react to system state
if it changed

– are able to give
significantly better
performance

CA463 Lecture Notes (Martin Crane 2014) 12

Casavant & Kuhl (cont’d):
Centralized V Distributed

• Centralized Algorithms:

– collect info to server
node and it makes
assignment decision

– can make efficient
decisions, have lower
fault-tolerance

– must take account of
info collection/allocation
times

• Distributed Algorithms:

– contains entities to make
decisions on a
predefined set of nodes

– avoid the bottleneck of
collecting state info and
can react faster

– don’t have to take
account of info times

CA463 Lecture Notes (Martin Crane 2014) 13

Load Balancing: Coffman’s Algorithm
• This is an optimal static algorithm that works on arbitrary task

(program) graphs.

• Since generally, the problem is NP-complete, some simplifying
assumptions must be made:

1. All tasks have the same execution time.

2. Comms negligible versus computation. Precedence ordering remains.

• The Algorithm

1. Assign labels 1, … , 𝑡 to the 𝑡 terminal (i.e. end) tasks.
a) Let labels 1, … , 𝑗 − 1 be assigned, and let 𝑆 be the set of tasks with no

unlabelled successors.

b) For each node 𝑥 in 𝑆 define 𝑙(𝑥) as the decreasing sequence of the labels of the
immediate successors of 𝑥.

c) Label 𝑥 as 𝑗 if 𝑙(𝑥) ≤ 𝑙(𝑥′)(lexicographically) for all 𝑥’ in 𝑆.

2. Assign the highest labelled ready task to the next available time slot
among the two processors.

CA463 Lecture Notes (Martin Crane 2014) 14

Coffman’s Algorithm: Example

1 2 3

4

5

7 6

8 9 10 11

12 13 14

15 16 17

17 16 15

14

13

11 12

8 10 9 7

6

1 2 3

4 5
These Nodes have no
Unlabelled Successors

Nodes Inv Lex Order of Successors

14 31
13 3
12 32

These Nodes have no
Unlabelled Successors

Nodes Inv Lex

8 641
9 654

10 65
11 5

These Nodes have no
Unlabelled Successors

Nodes Inv Lex

7 10 8
6 8

Gantt Chart

P1 3 1 4 5 7 9 12 13 17

P2 2 11 10 6 8 14 16 15

CA463 Lecture Notes (Martin Crane 2014) 15

Scheduling Algorithms

• Concepts of load balancing & scheduling are closely related.

• The goal of scheduling is to maximize system performance,
by switching tasks from busy to less busy/ idle processors

• A scheduling strategy involves two important decisions:

1. determine tasks that can be executed in parallel, and

2. determine where to execute the parallel tasks.

• A decision is normally taken either based on prior
knowledge, or on information gathered during execution.

CA463 Lecture Notes (Martin Crane 2014) 16

Scheduling Algorithms: Difficulties

• A scheduling strategy design depends on the tasks’ properties:

a) Cost of tasks
– do all tasks have the same computation cost?

– if not, when are costs known? before execution, on creation, or on termination?

b) Dependencies between tasks
– can we execute the tasks in any order?

– if not, when are task dependencies known?

– again, before execution, when the task is created, or only when it terminates?

c) Locality
– is it important that some tasks execute in the same processor to reduce

communication costs?

– when do we know the communication requirements?

• Have come up against a lot of these ideas already in MPI Lectures

CA463 Lecture Notes (Martin Crane 2014) 17

Scheduling Algorithms: Differences

• Like Allocation Algorithms, Scheduling Algorithms can be
either Static or Dynamic.

• A key question is when certain information about the load
balancing problem is known.

• Leads to a spectrum of solutions:

1. Static scheduling:

• In this all info is available to the job scheduling algorithm

• Then this is able to run before any real computation starts.

• For this case, we can run off-line algorithms, eg graph
partitioning algorithms.

CA463 Lecture Notes (Martin Crane 2014) 18

Scheduling: Semi-Static Algorithms

2. Semi-Static Scheduling:

• In this case, info about load balancing may be known

– program startup, or

– beginning of each timestep, or

– at other well-defined points in the execution of the program.

• Offline algorithms may be used even though the problem has
dynamic aspects. eg Kernighan-Lin Graph Partitioning Algorithm

• Kernighan-Lin (KL) is a 𝑂(𝑛2 log 𝑛) heuristic algorithm for
solving the graph partitioning problem.

• It is commonly applied as a solution to the Travelling Salesman
Problem (TSP) which, ordinarily, is NP complete.

CA463 Lecture Notes (Martin Crane 2014) 19

Scheduling: Semi-Static Algorithms (cont’d)

• KL tries to split 𝑉 into two disjoint subsets 𝐴, 𝐵 of equal size.

• Partitioned such that sum 𝑇 of the weights of the edges
between nodes in 𝐴 and 𝐵 is minimized.

• Proceeds by finding an optimal set of interchanges between

elements of 𝐴, 𝐵 maximizing 𝑇𝑜𝑙𝑑 – 𝑇𝑛𝑒𝑤 (iterating as necessary)

• It then executes the operations, partitioning 𝑉 into 𝐴 and 𝐵.

• Kernighan-Lin has many applications in such areas as diverse as:

– Circuit Board Design (where edges represent solder on a circuit board
and need to minimize crossings between components represented by
vertices) and

– DNA sequencing (where edges represent a similarity measure between
DNA fragments and the vertices represent DNA fragments themselves).

CA463 Lecture Notes (Martin Crane 2014) 20

Scheduling: Dynamic Algorithms

3. Dynamic Scheduling:

• Here load balancing info is only known mid-execution.

• This gives rise to sub-divisions under which dynamic algorithms
can be classified:

a. source-initiative algorithms, where the processor that generates the
task decides which processor will serve the task, and

b. server-initiative algorithms, where each processor determines which
tasks it will serve.

• Examples of source-initiative algorithms are random splitting,
cyclical splitting, and join shortest queue.

• Examples of server-initiative algorithms are random service,
cyclical servicing, serve longest queue and shortest job first.

CA463 Lecture Notes (Martin Crane 2014) 21

Scheduling: Dynamic Algorithms (cont’d)

• Server-initiative algorithms tend to out-perform source-
initiative algorithms, with the same information content if
the communications costs are not a dominating effect.

• However, they are more sensitive to distribution of load
generation, and deteriorate quickly when one load source
generates more tasks than another.

• But in heavily loaded environments server-initiative
algorithms dominate source-initiative algorithms.

CA463 Lecture Notes (Martin Crane 2014) 22

Scheduling in Real Time Systems (RTS)
• The goal of scheduling here is to guarantee:

– that all critical task meet their deadlines and

– that as many as possible essential tasks meet theirs.

• RTS Scheduling can be synchronous or asynchronous.

1. Synchronous Scheduling Algorithms

• These are static algorithms in which the available
processing time is divided by hardware clock into frames.

• Into each frame a set of tasks are allocated which will be
guaranteed to be completed by the end of the frame.

• If a task is too big for a frame it is artificially divided into
highly dependent tasks such that the smaller tasks can be
scheduled into the frames.

CA463 Lecture Notes (Martin Crane 2014) 23

RTS Scheduling (cont’d)
2. Asynchronous Scheduling

• This can be either static or dynamic.

• In general dynamic scheduling algorithms are preferred as static
algorithms cannot react to changes in state such as h/w or s/w
failure in some subsystem.

• Dynamic Asynchronous Scheduling Algorithms in a hard real
time system must still guarantee that all critical tasks meet their
deadlines under specified failure conditions.

• So critical tasks are scheduled statically and replicates of them
are statically allocated to several processors and that the active
state information of the task is also duplicated.

• In the event of a processor failure the state information is sent
to a duplicate of the task and all further inputs are rerouted to
the replicate task.

CA463 Lecture Notes (Martin Crane 2014) 24

